지구와 다른행성들의 판구조론
판구조론의 원동력
판이 움직일 수 있는 이유는 두가지이다. 첫 번째는 해양판이 상대적으로 무겁기 때문이고, 두 번째 이유는 연약권의 역학적 연성 때문이다. 맨틀에서의 열방출은 판 구조운동의 근본적인 에너지 원천이다. 아직 논쟁이 남아있기는 하지만, 현재 받아들여지기로는 섭입대에서 가라앉는 해양지각의 상대적으로 높은 밀도가 판을 움직이는 가장 중요한 원동력이다. 해령에서 처음 생기는 해양지각은 아래에 있는 연약권보다 가볍다. 하지만 시간이 지남에 따라 전도에 의해 열을 방출하고 두꺼워지기 때문에 점차 무거워진다. 두꺼워지고 무거워진 암석권은 해구에서 연약권아래의 맨틀 심부로 가라앉을 수 있게되고, 판 운동의 대부분의 동력이 된다. 연약권이 약하기 때문에 판이 연약권을 뚫고 삽입대 안으로 들어갈 수 있다. 삽입이 판 운동의 가장 강한 원동력이기는 하지만, 유일한 에너지원이라고는 말할 수 없는데, 북미판이나 유라시아판과 같이 해구가 없는 데로 움직이는 판들이 있기 때문이다. 판 운동의 원동력은 지구과학자들 사이에서 아직 집중적인 연구와 토론의 주제이다.
지진파단층기법은 같은 깊이의 맨틀일지라도 지진파 진행속도에 불균질성이 있음을 보여준다. 이러한 변이들은 크게, 물질, 광물, 열분포의 불균일 때문이다. 물질의 차이라는 것은 암석을 이루는 화학적 구성이 불균일함을 의미하고, 광물의 불균일성은 광물 구조가 곳에 따라 다름을 의미한다. 그리고 열분포에 따라서 물질의 팽창과 수축이 지역에 따라 다를 수 있다. 이러한 불균일성은 맨틀이 대류하고 있음을 보여준다. 어떻게 맨틀대류가 암석권의 역학적 움직임에 직간접적으로 영향을 주는가 하는 것은 지구동력학의 연구주제이다. 어떻게든 맨틀의 에너지가 암석권에 전달되어 역학적 에너지로 전환되어야한다. 필수적으로 두 종류의 힘이 영향을 미치는 것으로 생각되고 있다. 마찰력과 중력이다.
수렴경계
수렴경계의 양상은 충돌하는 두 암석권의 종류에 따라 달라진다. 밀도가 높은 해양판이 밀도가 상대적으로 낮은 대륙판과 충돌하는 경우, 일반적으로 해양판이 대륙판 아래로 섭입하면서 형성한다. 지표에 나타나는 지형적 특징으로는 해양판 쪽에는 판의 경계를 따라 해구가 나타나고, 대륙판 위에는 해구와 나란한 방향으로 화산들이 줄지어 생긴다. 대륙판과 해양판이 만나서 섭입되는 곳의 좋은 예로는 남아메리카 대륙 서해안에서 나즈카 판이 남미 판 아래로 삽입하는 경우를 예로 들 수 있다. 이 과정에서 섭입되는 해양판 위에 있는 맨틀이 녹아 마그마가 생기게 되는데, 이들은 해양판으로부터 휘발성 물질을 공급받았기 때문에 녹을 수 있는 것으로 생각된다. 해양판이 섭입 온도가 높아지기 때문에 원래 공극이 많던 해양지각에 포함되어있던 물을 주성분으로 하는 휘발성 물질들이 삐져 나오게 한다. 휘발성 물질들이 삽입되는 해섭 위에 있던 맨틀에 공급되게 되면, 맨틀의 녹는점이 낮아지면서 휘발성 물질이 많이 녹아있는 마그마가 생기게 된다. 이들 마그마가 상승하여 지표에 닿아 화산활동을 일으키게 되는데, 녹아있는 휘발성 물질 때문에 화산 활동의 양상은 매우 폭발적이게 된다. 대륙지각과 해양지각이 만나는 경계는 선 모양이기 때문에 수렴경계에 수반되는 화산활동 역시 판의 경계에 평행하게 발달하게 된다. 남아메리카대륙 서해안의 안데스 산맥이 남북으로 길게 뻗어있는 것은 판의 수렴에 의한 화산활동에 의하여 많은 화산들이 발달하였기 때문이다. 비근한 예는 북아메리카대륙의 캐스캐이드 산맥에서도 발견된다. 이 곳에 있는 화산들은 활동기와 휴식기가 반복되는데, 활동기의 초기에는 유리질의 화산재와 부석 종류를 분출하다가 나중에는 마그마가 분출되어 화산이 커지는 패턴을 따른다.
두 대륙지각이 충돌하는 경우에는 두 판이 모두 압축되거나 한쪽 판이 다른 판 아래나 때때로 판 안으로 들어가게 된다. 어떤 경우에나 거대한 산악지대를 형성하게 된다. 가장 극적인 효과는 인도 판의 북쪽 경계가 유라시아판의 아래쪽으로 섭하는 히말라야 산맥과 티베트 고원지대에서 볼 수 있다. 이 충돌로 인해서 아시아 대륙이 충돌의 동쪽과 서쪽 모두에서 변형되고 있다.
해양판과 해양판이 충돌하는 경우 특징적인 지형은 한 판이 다른 판 아래로 섭입하면서 만들어 내는 호상 열도이다. 호상열도는 섭입은 해양지각의 휘발성 물질들로부터 생긴 마그마로부터 생긴 화산들로 구성된다. 열도의 모양이 호를 이루는 이유는 지구가 둥글기 때문이다. 탁구공의 한쪽을 눌러 찌그러뜨리면 변형을 받는 부분은 둥근 모양을 이루게 되는 것과 같은 이치이다. 깊은 해구가 호상열도 앞에 생기게 된다. 여기에서는 한 해양판이 다른 해양판 아래로 섭입하기 시작하는 곳이다. 이런 형태의 수렴경계의 좋은 예로는 일본과 알류샨 열도가 있다.
판은 비스듬히 충돌하는 경우가 있을 수 있는데, 이 경우에는 삽입과 더불어 주향이동단층이 충돌대를 따라 동시에 생기기도 한다.
모든 판의 경계들이 쉽게 결정되는 것은 아니다. 어떤 경우 판의 경계는 넓은 폭을 보이기 때문에 과학자들이 형태를 결정하는 데에 어려움을 겪기도 한다. 이러한 좋은 예로는 지중해-알프스 경계가 있다. 여기에는 두개의 큰 대륙판과 몇 개의 작은 판들이 엮여 있다. 더하여 대륙판의 경계가 대륙의 경계와 일치하지는 않는다. 북아메리카 판은 북아메리카 대륙 말고도 극동시베리아와 동북일본을 포함한다.
다른 행성의 판 구조
지구형 행성에서 나타나는 판구조운동의 양상은 질량에 달려있다. 지구보다 질량이 큰 암석질 행성이 판구조운동을 보이는 것으로 알려져 있다. 지구는 판구조운동이 일어날 수 있는 임계질량을 겨우 넘는 경우로 보이는데, 이는 지각에 풍부하게 분포하는 물의 존재 때문인 것으로 여겨진다. 태양계의 경우 지구보다 질량이 큰 암석질 행성은 존재하지 않으므로, 현재 판구조운동이 일어나고 있음이 확인된 행성은 지구가 유일하다.
금성
금성에서는 판구조운동의 흔적을 찾을 수 없다. 과거에 이 행성에 판구조운동이 있었는가에 대한 증거는 논쟁의 여지가 있다. 가장 널리 받아들여지는 학설에 의하면, 금성의 암석권은 수억년에 걸쳐 두꺼워진 다음 짧은 시간동안 새로운 암석권으로 판갈이된다. 따라서 마지막 격변 이후에 남은 지각으로는 과거의 일을 재구성하기 어려워진다. 암석 표면의 방사성 원소 연대 측정결과가 없는 현재까지의 상황에서, 금성의 표면 연령에 대하여 그나마 믿을 만한 수치는 표면에 분포하는 충돌구의 수를 세어서 얻을 수 있다. 이 방법으로 추론된 금성 표면의 나이는 5억년에서 7억 5천만 년 사이에 대체로 분포하며 최고치는 12억 년이다. 이 결과로부터 금성 표면은 먼 과거에 최소한 한 번은 행성 전체의 표면이 완전히 새로 형성되는 과정을 겪었고, 그 시기는 충돌구 연대측정으로 얻은 시기 언저리 쯤 되리라는 이론이 받아들여지게 되었다. 하지만 어느 정도 판의 이동이 있었다는 목소리도 있다.
금성에 판구조운동이 없는 이유에 대한 설명중의 하나는 금성의 표면 온도가 너무 높아서 충분한 양의 물이 존재할 수 없기 때문이라는 것이다. 지구의 지각에는 물이 스며들어 있어서 전단대의 발달에 중요한 역할을 한다. 지각에 약한 부분이 있어야 그 곳이 경계가 되어 판이 서로 다른 방향으로 이동하든지 할 수 있게 된다. 그러한 지각의 연성화가 금성에서는 물의 부재로 일어나지 않았기 때문에 금성에서는 판구조운동이 나타나지 않았을 수 있다. 하지만 연구자들 중에는 금성에서도 판구조활동이 있거나 있었다고 생각하는 사람들이 있다.
화성
금성과는 달리 화성의 지각에는 물이 포함되어있다. 이 행성은 지구에 비하여 상당히 작지만, 유사한 형태의 판구조활동의 흔적으로 볼 수 있는 것들이 있다. 타르시스 지역의 거대화산들은 지구의 호상열도처럼 일렬로 늘어서 있다. 마리너스 협곡은 판의 벌어짐에 의해 형성되었을 수도 있다.
마스 글로벌 서베이어 탐사선이 1999년에 화성의 자기장을 관측하였다. 그로부터 거대 규모의 지자기 띠가 발견되었다. 이러한 자화 무늬를 설명하기 위하여 적어도 한 때는 이 행성에 판구조운동과 비슷한 활동이 있었다는 주장이 제기되었다.
갈릴레이 위성
목성의 위성 중의 몇몇은 판구조활동에 관련된 것과 비슷한 형태의 변형 흔점들을 보이나, 물질이나 각 위성마다의 기작은 지구와는 다른 것 같아 보인다.
타이탄
토성의 가장 큰 위성인 타이탄의 경우, 호이겐스 탐사선으로부터 얻어진 수치고도정보로부터 판구조활동이 있을 수도 있음이 보고된 적이 있다.